Copied to
clipboard

?

G = C42.105D10order 320 = 26·5

105th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.105D10, C10.562- (1+4), (C4×D4).12D5, C4⋊C4.280D10, (D4×C20).13C2, (C4×Dic10)⋊27C2, (C2×D4).209D10, C20.48D48C2, (C2×C10).85C24, C20.6Q815C2, C20.291(C4○D4), (C4×C20).147C22, (C2×C20).585C23, C22⋊C4.130D10, Dic5.Q87C2, C23.D106C2, (C22×C4).204D10, C4.115(D42D5), C23.D5.9C22, (D4×C10).303C22, C22.11(C4○D20), C23.21D106C2, C4⋊Dic5.296C22, (C22×C20).79C22, (C2×Dic5).35C23, C22.113(C23×D5), C23.165(C22×D5), C23.11D1027C2, (C22×C10).155C23, C54(C22.46C24), (C4×Dic5).222C22, C23.18D10.5C2, C2.14(D4.10D10), (C2×Dic10).244C22, C10.D4.153C22, (C22×Dic5).93C22, (C2×C4⋊Dic5)⋊23C2, C2.41(C2×C4○D20), C10.37(C2×C4○D4), C2.19(C2×D42D5), (C2×C10).15(C4○D4), (C5×C4⋊C4).321C22, (C2×C4).155(C22×D5), (C5×C22⋊C4).142C22, SmallGroup(320,1213)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.105D10
C1C5C10C2×C10C2×Dic5C22×Dic5C23.11D10 — C42.105D10
C5C2×C10 — C42.105D10

Subgroups: 598 in 214 conjugacy classes, 99 normal (51 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×12], C22, C22 [×2], C22 [×5], C5, C2×C4 [×5], C2×C4 [×16], D4 [×2], Q8 [×2], C23 [×2], C10 [×3], C10 [×3], C42, C42 [×4], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×15], C22×C4 [×2], C22×C4 [×2], C2×D4, C2×Q8, Dic5 [×8], C20 [×2], C20 [×4], C2×C10, C2×C10 [×2], C2×C10 [×5], C2×C4⋊C4, C42⋊C2 [×3], C4×D4, C4×Q8, C22⋊Q8 [×2], C22.D4 [×2], C42.C2 [×3], C422C2 [×2], Dic10 [×2], C2×Dic5 [×8], C2×Dic5 [×4], C2×C20 [×5], C2×C20 [×4], C5×D4 [×2], C22×C10 [×2], C22.46C24, C4×Dic5 [×4], C10.D4 [×10], C4⋊Dic5 [×3], C4⋊Dic5 [×2], C23.D5 [×6], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C22×Dic5 [×2], C22×C20 [×2], D4×C10, C4×Dic10, C20.6Q8, C23.11D10 [×2], C23.D10 [×2], Dic5.Q8 [×2], C20.48D4 [×2], C2×C4⋊Dic5, C23.21D10, C23.18D10 [×2], D4×C20, C42.105D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- (1+4), C22×D5 [×7], C22.46C24, C4○D20 [×2], D42D5 [×2], C23×D5, C2×C4○D20, C2×D42D5, D4.10D10, C42.105D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, bc=cb, dbd-1=b-1, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 68 63 6)(2 7 64 69)(3 70 65 8)(4 9 66 61)(5 62 67 10)(11 16 84 89)(12 90 85 17)(13 18 86 81)(14 82 87 19)(15 20 88 83)(21 26 80 75)(22 76 71 27)(23 28 72 77)(24 78 73 29)(25 30 74 79)(31 36 58 53)(32 54 59 37)(33 38 60 55)(34 56 51 39)(35 40 52 57)(41 153 129 107)(42 108 130 154)(43 155 121 109)(44 110 122 156)(45 157 123 101)(46 102 124 158)(47 159 125 103)(48 104 126 160)(49 151 127 105)(50 106 128 152)(91 120 147 138)(92 139 148 111)(93 112 149 140)(94 131 150 113)(95 114 141 132)(96 133 142 115)(97 116 143 134)(98 135 144 117)(99 118 145 136)(100 137 146 119)
(1 18 57 24)(2 19 58 25)(3 20 59 26)(4 11 60 27)(5 12 51 28)(6 13 52 29)(7 14 53 30)(8 15 54 21)(9 16 55 22)(10 17 56 23)(31 74 64 82)(32 75 65 83)(33 76 66 84)(34 77 67 85)(35 78 68 86)(36 79 69 87)(37 80 70 88)(38 71 61 89)(39 72 62 90)(40 73 63 81)(41 148 158 116)(42 149 159 117)(43 150 160 118)(44 141 151 119)(45 142 152 120)(46 143 153 111)(47 144 154 112)(48 145 155 113)(49 146 156 114)(50 147 157 115)(91 101 133 128)(92 102 134 129)(93 103 135 130)(94 104 136 121)(95 105 137 122)(96 106 138 123)(97 107 139 124)(98 108 140 125)(99 109 131 126)(100 110 132 127)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 146 63 100)(2 145 64 99)(3 144 65 98)(4 143 66 97)(5 142 67 96)(6 141 68 95)(7 150 69 94)(8 149 70 93)(9 148 61 92)(10 147 62 91)(11 46 84 124)(12 45 85 123)(13 44 86 122)(14 43 87 121)(15 42 88 130)(16 41 89 129)(17 50 90 128)(18 49 81 127)(19 48 82 126)(20 47 83 125)(21 159 80 103)(22 158 71 102)(23 157 72 101)(24 156 73 110)(25 155 74 109)(26 154 75 108)(27 153 76 107)(28 152 77 106)(29 151 78 105)(30 160 79 104)(31 131 58 113)(32 140 59 112)(33 139 60 111)(34 138 51 120)(35 137 52 119)(36 136 53 118)(37 135 54 117)(38 134 55 116)(39 133 56 115)(40 132 57 114)

G:=sub<Sym(160)| (1,68,63,6)(2,7,64,69)(3,70,65,8)(4,9,66,61)(5,62,67,10)(11,16,84,89)(12,90,85,17)(13,18,86,81)(14,82,87,19)(15,20,88,83)(21,26,80,75)(22,76,71,27)(23,28,72,77)(24,78,73,29)(25,30,74,79)(31,36,58,53)(32,54,59,37)(33,38,60,55)(34,56,51,39)(35,40,52,57)(41,153,129,107)(42,108,130,154)(43,155,121,109)(44,110,122,156)(45,157,123,101)(46,102,124,158)(47,159,125,103)(48,104,126,160)(49,151,127,105)(50,106,128,152)(91,120,147,138)(92,139,148,111)(93,112,149,140)(94,131,150,113)(95,114,141,132)(96,133,142,115)(97,116,143,134)(98,135,144,117)(99,118,145,136)(100,137,146,119), (1,18,57,24)(2,19,58,25)(3,20,59,26)(4,11,60,27)(5,12,51,28)(6,13,52,29)(7,14,53,30)(8,15,54,21)(9,16,55,22)(10,17,56,23)(31,74,64,82)(32,75,65,83)(33,76,66,84)(34,77,67,85)(35,78,68,86)(36,79,69,87)(37,80,70,88)(38,71,61,89)(39,72,62,90)(40,73,63,81)(41,148,158,116)(42,149,159,117)(43,150,160,118)(44,141,151,119)(45,142,152,120)(46,143,153,111)(47,144,154,112)(48,145,155,113)(49,146,156,114)(50,147,157,115)(91,101,133,128)(92,102,134,129)(93,103,135,130)(94,104,136,121)(95,105,137,122)(96,106,138,123)(97,107,139,124)(98,108,140,125)(99,109,131,126)(100,110,132,127), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,146,63,100)(2,145,64,99)(3,144,65,98)(4,143,66,97)(5,142,67,96)(6,141,68,95)(7,150,69,94)(8,149,70,93)(9,148,61,92)(10,147,62,91)(11,46,84,124)(12,45,85,123)(13,44,86,122)(14,43,87,121)(15,42,88,130)(16,41,89,129)(17,50,90,128)(18,49,81,127)(19,48,82,126)(20,47,83,125)(21,159,80,103)(22,158,71,102)(23,157,72,101)(24,156,73,110)(25,155,74,109)(26,154,75,108)(27,153,76,107)(28,152,77,106)(29,151,78,105)(30,160,79,104)(31,131,58,113)(32,140,59,112)(33,139,60,111)(34,138,51,120)(35,137,52,119)(36,136,53,118)(37,135,54,117)(38,134,55,116)(39,133,56,115)(40,132,57,114)>;

G:=Group( (1,68,63,6)(2,7,64,69)(3,70,65,8)(4,9,66,61)(5,62,67,10)(11,16,84,89)(12,90,85,17)(13,18,86,81)(14,82,87,19)(15,20,88,83)(21,26,80,75)(22,76,71,27)(23,28,72,77)(24,78,73,29)(25,30,74,79)(31,36,58,53)(32,54,59,37)(33,38,60,55)(34,56,51,39)(35,40,52,57)(41,153,129,107)(42,108,130,154)(43,155,121,109)(44,110,122,156)(45,157,123,101)(46,102,124,158)(47,159,125,103)(48,104,126,160)(49,151,127,105)(50,106,128,152)(91,120,147,138)(92,139,148,111)(93,112,149,140)(94,131,150,113)(95,114,141,132)(96,133,142,115)(97,116,143,134)(98,135,144,117)(99,118,145,136)(100,137,146,119), (1,18,57,24)(2,19,58,25)(3,20,59,26)(4,11,60,27)(5,12,51,28)(6,13,52,29)(7,14,53,30)(8,15,54,21)(9,16,55,22)(10,17,56,23)(31,74,64,82)(32,75,65,83)(33,76,66,84)(34,77,67,85)(35,78,68,86)(36,79,69,87)(37,80,70,88)(38,71,61,89)(39,72,62,90)(40,73,63,81)(41,148,158,116)(42,149,159,117)(43,150,160,118)(44,141,151,119)(45,142,152,120)(46,143,153,111)(47,144,154,112)(48,145,155,113)(49,146,156,114)(50,147,157,115)(91,101,133,128)(92,102,134,129)(93,103,135,130)(94,104,136,121)(95,105,137,122)(96,106,138,123)(97,107,139,124)(98,108,140,125)(99,109,131,126)(100,110,132,127), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,146,63,100)(2,145,64,99)(3,144,65,98)(4,143,66,97)(5,142,67,96)(6,141,68,95)(7,150,69,94)(8,149,70,93)(9,148,61,92)(10,147,62,91)(11,46,84,124)(12,45,85,123)(13,44,86,122)(14,43,87,121)(15,42,88,130)(16,41,89,129)(17,50,90,128)(18,49,81,127)(19,48,82,126)(20,47,83,125)(21,159,80,103)(22,158,71,102)(23,157,72,101)(24,156,73,110)(25,155,74,109)(26,154,75,108)(27,153,76,107)(28,152,77,106)(29,151,78,105)(30,160,79,104)(31,131,58,113)(32,140,59,112)(33,139,60,111)(34,138,51,120)(35,137,52,119)(36,136,53,118)(37,135,54,117)(38,134,55,116)(39,133,56,115)(40,132,57,114) );

G=PermutationGroup([(1,68,63,6),(2,7,64,69),(3,70,65,8),(4,9,66,61),(5,62,67,10),(11,16,84,89),(12,90,85,17),(13,18,86,81),(14,82,87,19),(15,20,88,83),(21,26,80,75),(22,76,71,27),(23,28,72,77),(24,78,73,29),(25,30,74,79),(31,36,58,53),(32,54,59,37),(33,38,60,55),(34,56,51,39),(35,40,52,57),(41,153,129,107),(42,108,130,154),(43,155,121,109),(44,110,122,156),(45,157,123,101),(46,102,124,158),(47,159,125,103),(48,104,126,160),(49,151,127,105),(50,106,128,152),(91,120,147,138),(92,139,148,111),(93,112,149,140),(94,131,150,113),(95,114,141,132),(96,133,142,115),(97,116,143,134),(98,135,144,117),(99,118,145,136),(100,137,146,119)], [(1,18,57,24),(2,19,58,25),(3,20,59,26),(4,11,60,27),(5,12,51,28),(6,13,52,29),(7,14,53,30),(8,15,54,21),(9,16,55,22),(10,17,56,23),(31,74,64,82),(32,75,65,83),(33,76,66,84),(34,77,67,85),(35,78,68,86),(36,79,69,87),(37,80,70,88),(38,71,61,89),(39,72,62,90),(40,73,63,81),(41,148,158,116),(42,149,159,117),(43,150,160,118),(44,141,151,119),(45,142,152,120),(46,143,153,111),(47,144,154,112),(48,145,155,113),(49,146,156,114),(50,147,157,115),(91,101,133,128),(92,102,134,129),(93,103,135,130),(94,104,136,121),(95,105,137,122),(96,106,138,123),(97,107,139,124),(98,108,140,125),(99,109,131,126),(100,110,132,127)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,146,63,100),(2,145,64,99),(3,144,65,98),(4,143,66,97),(5,142,67,96),(6,141,68,95),(7,150,69,94),(8,149,70,93),(9,148,61,92),(10,147,62,91),(11,46,84,124),(12,45,85,123),(13,44,86,122),(14,43,87,121),(15,42,88,130),(16,41,89,129),(17,50,90,128),(18,49,81,127),(19,48,82,126),(20,47,83,125),(21,159,80,103),(22,158,71,102),(23,157,72,101),(24,156,73,110),(25,155,74,109),(26,154,75,108),(27,153,76,107),(28,152,77,106),(29,151,78,105),(30,160,79,104),(31,131,58,113),(32,140,59,112),(33,139,60,111),(34,138,51,120),(35,137,52,119),(36,136,53,118),(37,135,54,117),(38,134,55,116),(39,133,56,115),(40,132,57,114)])

Matrix representation G ⊆ GL4(𝔽41) generated by

40000
0100
00412
00237
,
32000
0900
00400
00040
,
25000
02300
003728
00394
,
02300
25000
0056
002336
G:=sub<GL(4,GF(41))| [40,0,0,0,0,1,0,0,0,0,4,2,0,0,12,37],[32,0,0,0,0,9,0,0,0,0,40,0,0,0,0,40],[25,0,0,0,0,23,0,0,0,0,37,39,0,0,28,4],[0,25,0,0,23,0,0,0,0,0,5,23,0,0,6,36] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F4A···4F4G4H4I4J4K4L4M···4R5A5B10A···10F10G···10N20A···20H20I···20X
order12222224···44444444···45510···1010···1020···2020···20
size11112242···2441010101020···20222···24···42···24···4

65 irreducible representations

dim11111111111222222222444
type+++++++++++++++++---
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D10D10C4○D202- (1+4)D42D5D4.10D10
kernelC42.105D10C4×Dic10C20.6Q8C23.11D10C23.D10Dic5.Q8C20.48D4C2×C4⋊Dic5C23.21D10C23.18D10D4×C20C4×D4C20C2×C10C42C22⋊C4C4⋊C4C22×C4C2×D4C22C10C4C2
# reps111222211212442424216144

In GAP, Magma, Sage, TeX

C_4^2._{105}D_{10}
% in TeX

G:=Group("C4^2.105D10");
// GroupNames label

G:=SmallGroup(320,1213);
// by ID

G=gap.SmallGroup(320,1213);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,100,675,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽